
Python Basics
And how to make the computer do the work for you

Quantitative Methods Workshop 2025
January 2nd 2025
10:00am – 12:00pm
Georgina Woo

The Plan!!

Welcome!

Programming tools

Core Python concepts

Kahoot 1

More Python concepts

Kahoot 2

Programming time

AMA/Review/Feedback

5m

15m

1h 15m

20m

45m

15m

15m

1h 45m

10am – 12pm 1:45pm-4:45pm

3Theatre designer -> CS major @ Hunter College -> QMW 2024 -> MSRP 2024

My Creatures (Kanlab is still eating) My MSRP supervisor Pramod

Kanlab! Mandana with a fan

What is Python?

Python is a high-level programming language known for its readability and ease of
use.

4What is Python?Python Basics

High Level

5What is Python?Python Basics

Highly abstract, human-readable code Slightly less readableI don’t want to read this.

Python

High-ish Level

6What is Python?Python Basics

I don’t want to read this.Still readable

C++

Low Level

7What is Python?Python Basics

Noooo.
MIPS

Under the hood

8What is Python?Python Basics

Why Python?

Python is beginner friendly, has extensive library support, and is widely used in
scientific research, data analysis, and machine learning.

9Why Python?Python Basics

What tools can we use to program?

● Google Colab

● IDLE

● Terminal scripting

● VS Code

10Why Python?Python Basics

Demo

● Installing Python: https://python.org

● Using IDLE

● Terminal scripting and file systems

● Jupyter Notebooks and Google Colab

11Demo ways to codePython Basics

https://python.org/

Some shell commands

● pwd: Print Working Directory

● ls: List files and folders

● Mkdir: Make a directory/folder -> mkdir foldername

● cd: change directory -> cd foldername

● cp: Copy files -> cp ogfilename newfilename

● mv: Move files -> mv filename1 foldername

● * : wildcard operator -> *.py refers to all Python files

12Terminal commandsPython Basics

Visual Studio Code (Optional)

● Download: https://code.visualstudio.com/download

● Click on the “Extensions” button on the left sidebar

● Search for “Python” and click “Install”

13VS codePython Basics

https://code.visualstudio.com/download

Jupyter Notebooks and Google Colab

● Google Colab: https://colab.google/

● Click on “New Notebook”

● Click on the box that says “Start coding…”, and print a message

● Eg. print(“Hello from Colab”)

● Click on the “Run” button, or press Shift+Enter

14Google ColabPython Basics

https://colab.google/

15

Follow along with Colab

Variables and data types

Math Operators

Boolean Logic

Comparison Operators

Conditionals

Slicing

Loops

Code with me on Colab!Python Basics

Data Types 16

What are some common data types?

Floats: Numbers with
decimals

Integers: Whole numbers

Eg. 5, -10 Eg. 3.14, -0.5

Strings: Text enclosed in
quotes

Eg. “Hello, World!”

Python Basics

Lists: A collection of items

Eg. [1, 2, 3] or ["A", "T", "G", "C"]

Booleans

Eg. True or False

Type casting 17

Type casting

Python Basics

Type casting (or type conversion) is the process of converting a variable
from one data type to another.
Function Description Example Result

int() Converts a value to an

integer

int(3.14) 3

float() Converts a value to a

floating-point number

float(3) 3.0

str() Converts a value to a

string

str(123) “123”

list() Converts a value to a

list (if possible)

list("hello") ['h', 'e', 'l', 'l', 'o']

bool() Converts a value to a

Boolean

bool(0)

bool(“0”)

False

True

Variables 18

What are variables?

Python Basics

A variable is like a container that stores information for your program to
use later.

You can name the variable anything you want (with some syntax
limitations)

How to create a variable in Python:

x = 10

name = “DNA Sequence”

The variable x now stores the value 10

The variable name now stores the value “DNA Sequence”

Try it ! 19

Try it in Colab!

Python Basics

• In a new cell:

• Create a variable age and store how old you are

• Create a variable hometown and store where you’re from

• Print a sentence about how old you are and where you’re from

print(“I’m”, age, “years old and from”, hometown)

Or

print(f“I’m {age} years old and from {hometown}”)

Recall:

x = 10

name = “DNA Sequence”

Hint: What data type is best to store an age?

Hint: What data type is best to store a hometown?

Comparison Operators 20

What are comparison operators?

Python Basics

DefinitionRecall:

● A Boolean is True or False ● Comparison operators compare two
values and return a Boolean value.

Operator Meaning Example

== Equal to 5 == 5

!= Not equal to 5 != 3

< Less than 3 < 5

> Greater than 10 > 7

<= Less than or equal to 5 <= 5

>= Greater than or equal to 7 >= 10

Note

● The assignment operator “=“ is not a
comparison operator!

E.g Is the left hand value [some operator] the right hand value?

Try it ! 21

Try it in Colab!

Python Basics

• In a new cell:

• Create variables x, y, and z and store three different numbers

• Print out the following results of each comparison:

• x is greater than y

• z is equal to y

• y is not equal to x

• z is less than and equal to y

Recall:

print(x < y)

Will print “True” or “False”

Math Operators 22

Math Operators

Python Basics

Operator Name Example Result

+ Addition 5 + 3 8

- Subtraction 5 - 3 2

* Multiplication 5 * 3 15

/ Division 5 / 3 1.6666666666666667

// Floor Division 5 // 3 1

% Modulus (Remainder) 5 % 3 2

** Exponentiation 5 ** 3 125

x = 5

y = 3
z = x+y # z is now 8
x += y # x is now 8

x += y means the same thing as x = x+y

Try it ! 23

Try it in Colab!

Python Basics

• In a new cell:

• Create a variable now and store the current time in military format (e.g.,
10:30 AM = 1030).

• Create another variable lunch and store the time for lunch (e.g., 1200 for
noon)

• Calculate how many hours and minutes are left until lunch.

• print a message like: "1 hour and 30 minutes until lunch!"

Hint:

Convert the current time and lunch time
to minutes and find the difference.
OR

Extract the hours and minutes from both
times and find the difference.

Logic! 24

Boolean values and Logical operators

Python Basics

DefinitionRecall

● A Boolean value can only be either True
or False

● Logical operators are used to combine or modify Boolean values, returning a Boolean result

operator Description Example: Explanation

and True if both are true A and B Both conditions must be true

or True if at least one is true A or B At least one condition must be true

not Reverses the Boolean value not A The opposite of the condition must be true

Logic! 25

Boolean values and Logical operators

Python Basics

Operator Description Example:

You’re eligible for MSRP Bio …

Explanation

and True if both are true “If you’re interested in research

and have a minimum GPA of 3.5
in STEM courses”

Both conditions must be true

or True if at least one is true “If you’re a full time undergraduate

at a university or college”

At least one condition must be

true

not Reverses the Boolean

value

“If you’re not a freshman” The opposite of the condition

must be true

Try It! 26

Try it in Colab!

Python Basics

• Create the following variables with True /False values (except GPA, which
should be a float)

• interest_research

• GPA

• in_university

• in_college

• freshman

• Create a variable result, and assign it to the following:

• Print the result!

result = (interest_research and GPA >= 3.5) and (in_university or in_college) and (not freshman)

Recall – Assigning values to variables:

interest_research = True

print(f“I should check out MSRP-Bio: {result}”)

Conditions, Conditions 27

Conditionals

Python Basics

Definition

● Conditionals allow a program to execute different sections of code
depending on the conditions.

Note

● if, elif, else
● Indentation is key!

if condition1:

Code to run if condition1 is true

Code on the first “level"

Code that is indented by one “level”

Indentation is done with the “Tab” key

Conditions, Conditions 28

Conditionals

Python Basics

if condition1:

Code to run if condition1 is true
if condition2:

Code to run if condition2 is True

more code to run if condition 2 is True

Code on the same “level"

Code that is indented by one “level”

Indentation is done with the “Tab” key

Definition

● Conditionals allow a program to execute different sections of code
depending on the conditions.

Note

● if, elif, else
● Indentation is key!

Conditions, Conditions 29

Conditionals

Python Basics

if condition1:

Code to run if condition1 is true
elif condition2:

Code to run if condition2 is True and condition1 is False

more code to run if condition 2 is True

Code on the same “level"

Code that is indented by one “level”

Indentation is done with the “Tab” key

Definition

● Conditionals allow a program to execute different sections of code
depending on the conditions.

Note

● if, elif, else
● Indentation is key!

Conditions, Conditions 30

Conditionals

Python Basics

if condition1:

Code to run if condition1 is true
elif condition2:

Code to run if condition2 is True and condition1 is false

more code to run if condition 2 is True
else:

#code to run only if all of the above conditions are false

Code on the same “level"

Code that is indented by one “level”

Indentation is done with the “Tab” key

Definition

● Conditionals allow a program to execute different sections of code
depending on the conditions.

Note

● if, elif, else
● Indentation is key!

Conditions, Conditions 31

Conditionals

Python Basics

if condition1:

Code to run if condition1 is true
elif condition2:

Code to run if condition2 is True and condition1 is false

more code to run if condition 2 is True
else:

#code to run only if all of the above conditions are false

A line of code written here will run after the if/elif/else block

Code on the same “level"

Code that is indented by one “level”

Indentation is done with the “Tab” key

Definition

● Conditionals allow a program to execute different sections of code
depending on the conditions.

Note

● if, elif, else
● Indentation is key!

if interest_research and GPA >= 3.5:

if in_university or in_college:
if not freshman:

print (”I meet all those requirements, I should check out MSRP Bio!”)

else:
print (”I won’t be a freshman forever!”)

else:
print (”MSRP is for undergrads!”)

else:

print (”There’s still time to lock in!”)

Try It! 32

Try it in Colab!

Python Basics

• In a new cell:

• Reuse your variables from earlier, and use conditional statements to print
out something about MSRP-Bio!

• An idea:

Remember this?
result = (interest_research and GPA >= 3.5) and (in_university or in_college) and (not freshman)

Try it ! 33

Try it in Colab!

Python Basics

Remember this?
result = (interest_research and GPA >= 3.5) and (in_university or in_college) and (not freshman)

if interest_research and GPA >= 3.5:

if in_university or in_college:
if not freshman:

print (”I meet all those requirements, I should check out MSRP Bio!”)

else:
print (”I won’t be a freshman forever!”)

else:
print (”MSRP is for undergrads!”)

else:

print (”There’s still time to lock in!”)

• In a new cell:

• Reuse your variables from earlier, and use conditional statements to print
out something about MSRP-Bio!

• An idea:

if interest_research and GPA >= 3.5:

if in_university or in_college:
if not freshman:

print (”I meet all those requirements, I should check out MSRP Bio!”)

else:
print (”I won’t be a freshman forever!”)

else:
print (”MSRP is for undergrads!”)

else:

print (”There’s still time to lock in!”)

Try it ! 34

Try it in Colab!

Python Basics

Remember this?
result = (interest_research and GPA >= 3.5) and (in_university or in_college) and (not freshman)

• In a new cell:

• Reuse your variables from earlier, and use conditional statements to print
out something about MSRP-Bio!

• An idea:

Try it ! 35

Try it in Colab!

Python Basics

Remember this?
result = (interest_research and GPA >= 3.5) and (in_university or in_college) and (not freshman)

if interest_research and GPA >= 3.5:

if in_university or in_college:
if not freshman:

print (”I should check out MSRP Bio!”)

else:
print (”I won’t be a freshman forever!”)

else:
print (”MSRP is for undergrads!”)

else:

print (”There’s still time to lock in!”)

• In a new cell:

• Reuse your variables from earlier, and use conditional statements to print
out something about MSRP-Bio!

• An idea:

Indexing 36

What is indexing?

Python Basics

dna = “ATGCGTACG”

dna[0] == “A”

dna[3] == “C”

dna[-1] == “G”

dna[-4] == “T”

Index: 0 1 2 3 4 5 6 7 8

-1-2-3…

DefinitionRecall:

● Strings are strings of characters, like
“ATGCGTACG”

● Lists are collections of items, like [1,
2, 3] or ["A", "T", "G", "C"]

● Indexing is one way to extract a
specific element of a sequence,
like a string or a list

Note

● Indexing begins from 0 (first
item on the left), or -1 (first item
on the right)

Indexing 37

What is indexing?

Python Basics

DefinitionRecall:

● Strings are strings of characters, like
“ATGCGTACG”

● Lists are collections of items, like [1,
2, 3] or ["A", "T", "G", "C"]

● Indexing is one way to extract a
specific element of a sequence,
like a string or a list

Note

● Indexing begins from 0 (first
item on the left), or -1 (first item
on the right)

dna = “ATGCGTACG”

dna[0] == “A”

dna[3] == “C”

dna[-1] == “G”

dna[-4] == “T”

Index: 0 1 2 3 4 5 6 7 8

-1-2-3…

Indexing 38

What is indexing?

Python Basics

DefinitionRecall:

● Strings are strings of characters, like
“ATGCGTACG”

● Lists are collections of items, like [1,
2, 3] or ["A", "T", "G", "C"]

● Indexing is one way to extract a
specific element of a sequence,
like a string or a list

Note

● Indexing begins from 0 (first
item on the left), or -1 (first item
on the right)

dna = “ATGCGTACG”

dna[0] == “A”

dna[3] == “C”

dna[-1] == “G”

dna[-4] == “T”

Index: 0 1 2 3 4 5 6 7 8

-1-2-3…

Indexing 39

What is indexing?

Python Basics

DefinitionRecall:

● Strings are strings of characters, like
“ATGCGTACG”

● Lists are collections of items, like [1,
2, 3] or ["A", "T", "G", "C"]

● Indexing is one way to extract a
specific element of a sequence,
like a string or a list

Note

● Indexing begins from 0 (first
item on the left), or -1 (first item
on the right)

dna = “ATGCGTACG”

dna[0] == “A”

dna[3] == “C”

dna[-1] == “G”

dna[-4] == “T”

Index: 0 1 2 3 4 5 6 7 8

-1-2-3…

Indexing 40

What is indexing?

Python Basics

DefinitionRecall:

● Strings are strings of characters, like
“ATGCGTACG”

● Lists are collections of items, like [1,
2, 3] or ["A", "T", "G", "C"]

● Indexing is one way to extract a
specific element of a sequence,
like a string or a list

Note

● Indexing begins from 0 (first
item on the left), or -1 (first item
on the right)

dna = “ATGCGTACG”

dna[0] == “A”

dna[3] == “C”

dna[-1] == “G”

dna[-4] == “T”

Index: 0 1 2 3 4 5 6 7 8

-1-2-3…

Sl icing 41

What is slicing?

Python Basics

dna = “ATGCGTACG”

dna[2:6] == “GCGT”

numbers = [1,2,3,4,5]

numbers[:4] == [1,2,3]

numbers[::2] == [1,3,5]

Index: 0 1 2 3 4 5 6 7 8

start:stop

Index: 0 1 2 3 4

DefinitionRecall:

● Strings are strings of characters, like
“ATGCGTACG”

● Lists are collections of items, like [1,
2, 3] or ["A", "T", "G", "C"]

● Slicing is one way to extract
items from a sequence, like a
string or a list

Note

● Slicing uses the format start,
stop, step

Sl icing 42

What is slicing?

Python Basics

dna = “ATGCGTACG”

dna[2:6] == “GCGT”

numbers = [1,2,3,4,5]

numbers[:4] == [1,2,3]

numbers[::2] == [1,3,5]

Index: 0 1 2 3 4 5 6 7 8

start:stop

Index: 0 1 2 3 4

DefinitionRecall:

● Strings are strings of characters, like
“ATGCGTACG”

● Lists are collections of items, like [1,
2, 3] or ["A", "T", "G", "C"]

● Slicing is one way to extract
items from a sequence, like a
string or a list

Note

● Slicing uses the format start,
stop, step

Sl icing 43

What is slicing?

Python Basics

numbers = [1,2,3,4,5]

numbers[:4] == [1,2,3]

numbers[::2] == [1,3,5]

Index: 0 1 2 3 4

DefinitionRecall:

● Strings are strings of characters, like
“ATGCGTACG”

● Lists are collections of items, like [1,
2, 3] or ["A", "T", "G", "C"]

● Slicing is one way to extract
items from a sequence, like a
string or a list

Note

● Slicing uses the format start,
stop, step

Sl icing 44

What is slicing?

Python Basics

numbers = [1,2,3,4,5]

numbers[:4] == [1,2,3,4]

numbers[::2] == [1,3,5]

Index: 0 1 2 3 4

DefinitionRecall:

● Strings are strings of characters, like
“ATGCGTACG”

● Lists are collections of items, like [1,
2, 3] or ["A", "T", "G", "C"]

● Slicing is one way to extract
items from a sequence, like a
string or a list

Note

● Slicing uses the format start,
stop, step

Sl icing 45

What is slicing?

Python Basics

numbers = [1,2,3,4,5]

numbers[::2] == [1,3,5]

Index: 0 1 2 3 4

DefinitionRecall:

● Strings are strings of characters, like
“ATGCGTACG”

● Lists are collections of items, like [1,
2, 3] or ["A", "T", "G", "C"]

● Slicing is one way to extract
items from a sequence, like a
string or a list

Note

● Slicing uses the format start,
stop, step

When left blank, here start and

stop are left as their “defaults”, so
the entire list is considered
The step size defaults to 1 if left

blank

Try it ! 46

Try it in Colab!

Python Basics

• In a new cell:

• Create a list variable called numbers that holds 10 unique numbers

• Print out the same list, but use slicing so that only every third number is
displayed.

Hint: remember that indexing starts from 0, and the format of slicing is [start:stop:step]

where start is inclusive, but stop is exclusive.

For example, if the numbers list looks like: [1,2,3,4,5,6,7,8,9,10]

Your code should display: [3,6,9]

For Loops 47

For loops

Python Basics

Definition

● For loops allow you to execute a block of code repeatedly for a fixed number of times

for i in range(5):

print(i)

Prints out:

0
1

2
3
4

for i in range(1,11,3):

print(i)

Prints out:

1
4

7
10

Start,stop,step

For Loops 48

For loops

Python Basics

Definition

● For loops also allow you to “visit” every item in a collection

for item in [1,2,3,4]:

print(item)

Prints out:

1
2

3
4

for letter in “Python”:

print(letter)

Prints out:

P
y

t
h
o

n

Try it ! 49

Try it in Colab!

Python Basics

• In new cells:

• Write a for loop that prints out every multiple of 5 between 5 and 100
(inclusive)

• Write a for loop that prints out every odd indexed number in the numbers
list

• Write a for loop that prints out every even number in the numbers list
Hints:

You can find the length of a list with the len() function.
Example:
numbers = [1,2,3]

print(len(numbers)) #prints 3

Remember:

x +=y means the same thing as x = x+y

While Loops 50

While Loops

Python Basics

Definition

● While loops allow you to execute a block of code repeatedly until a condition is met

x = 0

while True:
print(x)
x += 1

if x == 10:
print("Stopping the loop.")

break

x = 1

while x <= 5:
print(f"Count: {x}")
x += 1

while condition1:

code to be executed
Code to be executed when condition1 is false

Try it ! 51

Try it in Colab!

Python Basics

• In a new cell:

• Create a variable list called numbers that holds 10 unique numbers

• Create a variable called total and store the value 0

• Use a for loop to find the sum of all the numbers

• Use a while loop to find the sum of all the numbers
Hints:

You can find the length of a list with the len() function.
Example:
numbers = [1,2,3]

print(len(numbers))

Remember:

x +=y means the same thing as x = x+y

Recap? 52

Variables and data types

Math Operators

Boolean Logic

Comparison Operators

Conditionals

Slicing

Loops

Questions?

Python Basics

Recap? 53Python Basics

Kahoot – 20m

(Time permitting) AMA fr

Up Next

Questions?

54

Kahoot!!!

Python Basics KAHOOT Yippee

Post lunch plan 55Python Basics

Dictionaries

Functions

Reading and writing to files

Pandas

Kahoot

Programming time !

After Lunch (till 1:45pm)

Questions?

Questions? 56

Welcome Back!

Python Basics

Dictionaries 57

Dictionaries

Python Basics

Definition

● A dictionary is a collection of key-value pairs. Each key is unique and is used to access its corresponding
value.

dictionary = {key1:value1, key2:value2}

scores = {“Alice”:[88.5,92.3,85.0], “Bob”:[75.5, 80.0, 78.8]}

inventory = {“Apple”:0.39, “Banana”:0.26}

codon_to_amino_acid = {"ATG": "Methionine", "TAA": "Stop”}

dictionary[key1] == value1

Dictionaries 58

Dictionaries

Python Basics

Definition

● A dictionary is a collection of key-value pairs. Each key is unique and is used to access its corresponding
value.

dictionary = {key1:value1, key2:value2}

scores = {“Alice”:[88.5,92.3,85.0], “Bob”:[75.5, 80.0, 78.8]}

inventory = {“Apple”:0.39, “Banana”:0.26}

codon_to_amino_acid = {"ATG": "Methionine", "TAA": "Stop”}

inventory[“Banana”] == 0.26

Dictionaries 59

Dictionaries

Python Basics

Definition

● A dictionary is a collection of key-value pairs. Each key is unique and is used to access its corresponding
value.

dictionary = {key1:value1, key2:value2}

scores = {“Alice”:[88.5,92.3,85.0], “Bob”:[75.5, 80.0, 78.8]}

inventory = {“Apple”:0.39, “Banana”:0.26}

amino_acids = {"ATG": "Methionine", ”GCC": ”Alanine”}

Dictionaries 60

Dictionaries

Python Basics

Definition

● A dictionary is a collection of key-value pairs. Each key is unique and is used to access its corresponding
value.

dictionary = {key1:value1, key2:value2}

inventory = {“Apple”:0.39, “Banana”:0.26}

print(inventory.keys())

print(inventory.values())

print(inventory.items())

Try it ! 61

Try it in Colab!

Python Basics

• In a new cell:

• Create a dictionary variable called codons that holds

• {"ATG": "Methionine", ”CGG": ”Arginine”}

• Print out the value associated with the key "ATG"

• Add a new key-value pair: ”GCC": ”Alanine”

• Loop through the keys and values using .items() to print out:

• codon : amino_acid

Hint:

If the key doesn’t exist in the dictionary yet, we can
add a new key-value pair with:
dictionaryname[newkey] = newvalue

for key, value in dictionaryname.items()

do something with the key and value

Functions 62

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def function_name():

code to do something

function_name() # “calls” the function

Functions 63

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def function_name():

code to do something

function_name() # “calls” the function

Functions 64

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def function_name(parameter):

code to do something with the parameter

function_name(some_parameter) # “calls” the function

Functions 65

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def function_name(parameter):

code to do something with the parameter

function_name(some_input) # “calls” the function

Functions 66

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def countdown(number):

for i in range(number,-1,-1):

print(i)

countdown(10) # “calls” the function with the argument 10

Functions 67

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def countdown(number):

for i in range(number,-1,-1):

print(i)

countdown(10)

Defines a function countdown that takes a

parameter “number”

“calls” the function with the argument 10

What is The Central Dogma? 68

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def countdown(number):

for i in range(number,-1,-1):

print(i)

countdown(10)

10

Functions 69

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def countdown(number):

for i in range(number,-1,-1):

print(i)

countdown(10)

10

10

Functions 70

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def countdown(number):

for i in range(number,-1,-1):

print(i)

countdown(10)

10

10

Output:

10
9
8

7
6

5
4
3

2
1

0

calls the function with the number 5

and saves it to variable result

Functions 71

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def double(number):

return number * 2

result = double(5)

print(result)

Functions 72

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def double(number):

return number * 2

result = double(5)

print(result)

calls the function with the argument

5 and saves it to variable result

Functions 73

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def double(number):

return number * 2

result = double(5)

print(result)

calls the function with the number 5

and saves it to variable result

5

Functions 74

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def double(number):

return number * 2

result = double(5)

print(result)

calls the function with the number 5

and saves it to variable result

5

5 * 2 = 10

Functions 75

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def double(number):

return number * 2

result = double(5)

print(result)

calls the function with the number 5

and saves it to variable result

5

5 * 2 = 10

10

Functions 76

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def double(number):

return number * 2

result = double(5)

print(result)

calls the function with the number 5

and saves it to variable result

5

5 * 2 = 10

10

10

Functions 77

Functions

Python Basics

Definition

● A function is a block of reusable code that performs a specific task. E.g. print()

def double(number):

return number * 2

result = double(5)

print(result)

calls the function with the number 5

and saves it to variable result

5

5 * 2 = 10

10

10

Output:

10

Try it ! 78

Try it in Colab!

Python Basics

• In a new cell:

• Define a function calculate_gc_content that takes a string parameter
“dna”

• In the function, count the number of “G”s and “C”s in dna and save them
in two variables.

• Calculate the percentage of gc content against the length of the dna

• Return the result

• Call the function with "ATGCGTAC" and print out the result

Remember:

len(some_string) returns the length of a string

Hint:

some_string.count(“G”) returns the number of “G”s in
the string

(g_count + c_count)

length of the dna
x 100

Fi le I/O 79

File I/O in Python

Python Basics

Definition

● File I/O refers to reading data from or writing data to files

Reading from a file

with open("example.txt", "r") as file:

content = file.read()

print(content)

Reading from a file

with open("example.txt", "r") as file:

content = file.read()

print(content).

r – Read mode

Fi le I/O 80

File I/O in Python

Python Basics

Definition

● File I/O refers to reading data from or writing data to files

Writing to a file

with open("example.txt", "w") as file:

file.write("This is a sample file.")

Reading from a file

with open("example.txt", "r") as file:

content = file.read()

print(content).

w – Write mode

Fi le I/O 81

File I/O in Python

Python Basics

Definition

● File I/O refers to reading data from or writing data to files

Reading from a file

with open("example.txt", "r") as file:

content = file.read()

print(content)

Reading from a file

with open("example.txt", "r") as file:

content = file.read()

print(content).

r – Read mode

Try it ! 82

Try it in Colab!

Python Basics

• In a new cell:

• Write to a new file, sequences.txt, the following 3 lines:

• Open the input file sequences.txt in read mode

• Open an output file filtered.txt in write mode

• Loop through each line in the input file

• If the sequence length is greater than 10, write it to
filtered.txt

ATG

ATGCGTACGTT
GCTAGCTAGCT

Hint:

with open(“example.txt”, “r”) as file:
content = file.read() #reads all the content
for line in file:

#reads the file line by line
with open(“example.txt”, “w”) as file:

file.write(“text”)

Pandas 83

Pandas (and csvs)

Python Basics

Definition

● Pandas is a Python library for data manipulation and analysis.
● A common file type you’ll be working with is .csv

import pandas as pd

dataframe = pd.read_csv(filename)

The truthA CSV (Comma separated value) opened with Excel

Pandas 84

Pandas (and csvs)

Python Basics

Definition

● Pandas is a Python library for data manipulation and analysis.
● A common file type you’ll be working with is .csv

import pandas as pd

dataframe = pd.read_csv(filename)

Pandas 85

Pandas (and csvs)

Python Basics

Definition

● Pandas is a Python library for data manipulation and analysis.
● A common file type you’ll be working with is .csv

import pandas as pd

dataframe = pd.read_csv(filename)

e.g. “grades.csv”

A 2D labeled data structure

Pandas 86

Pandas (and csvs)

Python Basics

Definition

● Pandas is a Python library for data manipulation and analysis.
● A common file type you’ll be working with is .csv

import pandas as pd

dataframe = pandas.read_csv(filename)

Pandas 87

Pandas (and csvs)

Python Basics

Definition

● Pandas is a Python library for data manipulation and analysis.
● A common file type you’ll be working with is .csv

import pandas as pd

dataframe = pd.read_csv(filename)

e.g. “grades.csv”

Pandas 88

Pandas (and csvs)

Python Basics

import pandas as pd

df = pd.read_csv(“grades.csv”)

df.head() # the first 5 rows

df.head(10) #the first 10 rows

df[“Science”]) #prints out the Science column only

df[“Sum”] = df[“Math”] + df[”Science”]

df = df.drop(columns=["History"])

df[”Math”].mean()/.max()/.min()/.std()

grades.csv

Pandas 89

Pandas (and csvs)

Python Basics

import pandas as pd

df = pd.read_csv(“grades.csv”)

df[“Science”] # the Science column only

df[[“Science”,”Math]] # the Science and Math column

grades.csv

Pandas 90

Pandas (and csvs)

Python Basics

import pandas as pd

df = pd.read_csv(“grades.csv”)

df[“Sum”] = df[“Math”] + df[”Science”] # makes a new column

df = df.drop(columns=["History"])

df[”Math”].mean()/.max()/.min()/.std()

grades.csv

Pandas 91

Pandas (and csvs)

Python Basics

import pandas as pd

df = pd.read_csv(“grades.csv”)

df = df.drop(columns=[”Math”, Science])

df = df.drop(“Math”)

grades.csv

#drops both columns

Pandas 92

Pandas (and csvs)

Python Basics

import pandas as pd

df = pd.read_csv(“grades.csv”)

df[”English”].mean() # the average English grades

df[”English”].max() # the highest English grade

df[”English”].min() # the lowest English grade

df[”English”].std() # The standard deviation for English

grades.csv

Try it ! 93

Try it in Colab!

Python Basics

• In a new cell:

• import pandas as pd

• Create a dataframe df by reading california_housing_test.csv (in colab’s
sample_data folder)

• Print the first 10 rows

• Drop the longitude and latitude columns

• Print the first 10 rows again

• Calculate the average number of rooms per household and make a new
column avg_rooms

Hint:

df = df.drop(columns = [col1,col2…])

Try it ! 94

Try it in Colab! (cont)

Python Basics

• Filter rows where median house value is greater than $150,000 and save
that as a new dataframe variable “filtered”

• Print the first few rows of the filtered dataframe

• save the filtered dataframe to the file “filtered_housing_data.csv”

Hint:

We can filter data with logical/comparison operators:
filtered = df[df[“median_house_value”] > 150000]

Hint:

Convert pandas dataframes to csvs with:
filtered.to_csv(“filtered_housing_data.csv”)

Questions? 95Python Basics

Dictionaries

Functions

Reading and writing to files

Pandas

Questions?

Questions?

Kahoot!! 96

KAHOOT Part 2!!

Python Basics

Programming time! 97Python Basics

Programming time!
(Until 4:30pm)

Recap? 98

Thank you!

Plotting and Curve F itting

Keep in touch:

gwoo@mit.edu

I am also on LinkedIn (Georgina Woo)

	Slide 1: Python Basics And how to make the computer do the work for you
	Slide 2: The Plan!!
	Slide 3
	Slide 4: What is Python?
	Slide 5: High Level
	Slide 6: High-ish Level
	Slide 7: Low Level
	Slide 8: Under the hood
	Slide 9: Why Python?
	Slide 10: What tools can we use to program?
	Slide 11: Demo
	Slide 12: Some shell commands
	Slide 13: Visual Studio Code (Optional)
	Slide 14: Jupyter Notebooks and Google Colab
	Slide 15: Follow along with Colab
	Slide 16: What are some common data types?
	Slide 17: Type casting
	Slide 18: What are variables?
	Slide 19: Try it in Colab!
	Slide 20: What are comparison operators?
	Slide 21: Try it in Colab!
	Slide 22: Math Operators
	Slide 23: Try it in Colab!
	Slide 24: Boolean values and Logical operators
	Slide 25: Boolean values and Logical operators
	Slide 26: Try it in Colab!
	Slide 27: Conditionals
	Slide 28: Conditionals
	Slide 29: Conditionals
	Slide 30: Conditionals
	Slide 31: Conditionals
	Slide 32: Try it in Colab!
	Slide 33: Try it in Colab!
	Slide 34: Try it in Colab!
	Slide 35: Try it in Colab!
	Slide 36: What is indexing?
	Slide 37: What is indexing?
	Slide 38: What is indexing?
	Slide 39: What is indexing?
	Slide 40: What is indexing?
	Slide 41: What is slicing?
	Slide 42: What is slicing?
	Slide 43: What is slicing?
	Slide 44: What is slicing?
	Slide 45: What is slicing?
	Slide 46: Try it in Colab!
	Slide 47: For loops
	Slide 48: For loops
	Slide 49: Try it in Colab!
	Slide 50: While Loops
	Slide 51: Try it in Colab!
	Slide 52: Questions?
	Slide 53
	Slide 54: Kahoot!!!
	Slide 55
	Slide 56: Welcome Back!
	Slide 57: Dictionaries
	Slide 58: Dictionaries
	Slide 59: Dictionaries
	Slide 60: Dictionaries
	Slide 61: Try it in Colab!
	Slide 62: Functions
	Slide 63: Functions
	Slide 64: Functions
	Slide 65: Functions
	Slide 66: Functions
	Slide 67: Functions
	Slide 68: Functions
	Slide 69: Functions
	Slide 70: Functions
	Slide 71: Functions
	Slide 72: Functions
	Slide 73: Functions
	Slide 74: Functions
	Slide 75: Functions
	Slide 76: Functions
	Slide 77: Functions
	Slide 78: Try it in Colab!
	Slide 79: File I/O in Python
	Slide 80: File I/O in Python
	Slide 81: File I/O in Python
	Slide 82: Try it in Colab!
	Slide 83: Pandas (and csvs)
	Slide 84: Pandas (and csvs)
	Slide 85: Pandas (and csvs)
	Slide 86: Pandas (and csvs)
	Slide 87: Pandas (and csvs)
	Slide 88: Pandas (and csvs)
	Slide 89: Pandas (and csvs)
	Slide 90: Pandas (and csvs)
	Slide 91: Pandas (and csvs)
	Slide 92: Pandas (and csvs)
	Slide 93: Try it in Colab!
	Slide 94: Try it in Colab! (cont)
	Slide 95
	Slide 96: KAHOOT Part 2!!
	Slide 97
	Slide 98: Thank you!

