
A brief guide to using GitHub Georgina Woo

Introduction

This guide provides a quick summary of some common Git commands and procedures, and
is not meant to be a comprehensive guide to all things Git. It is simply a list of steps that I
have either used so many times I know it by heart, or have to revisit sometimes even while
using Git regularly. If you encounter problems or want to explore more advanced topics,
there are many excellent tutorials available online, and resources like Stack Overflow can be
very helpful for commonly faced issues.

1 Creating a GitHub Account

1. Go to the GitHub website: https://github.com/.

2. Click on the Sign up button.

3. Follow the instructions to create your account.

4. After creating your account, verify your email address.

2 Configuring Git with Your Email and Username

Before you start using Git, it’s important to configure it with your email address and user-
name, as these will be associated with your commits.

1. Open a terminal window.

2. Set your Git username by typing:

git config --global user.name "Your Name"

Replace "Your Name" with your actual name.

3. Set your email address by typing:

git config --global user.email "your.email@example.com"

Replace "your.email@example.com" with your actual email address.

4. To verify your configuration, type:

git config --global --list

This will display your current Git configuration settings.

Last Updated: September 2, 2024 1

https://github.com/


A brief guide to using GitHub Georgina Woo

3 Creating a Personal Access Token

A personal access token (PAT) is required to authenticate your Git operations when using
HTTPS instead of SSH, especially after GitHub deprecated password-based authentication
in 2021. GitHub may update the token creation process in the future, so users should refer
to the latest GitHub documentation if the steps differ.

1. Go to your GitHub account settings: https://github.com/settings/tokens.

2. Click on Generate new token (classic).

3. Give your token a descriptive name in the Note field.

4. Select the scopes or permissions you’d like to grant this token. For general use, repo
is a common choice.

5. Click Generate token at the bottom of the page.

6. Copy the generated token and store it securely, as you will not be able to view it again.

7. Use this token instead of your password when performing Git operations that require
authentication:

git push https://github.com/username/repo.git

Git will prompt you for a username and password. Use your GitHub username and the
generated personal access token as the password.

4 Cloning a Repository

1. Navigate to the repository you want to clone.

2. Click on the Code button and copy the URL.

3. Open a terminal window on your local machine and navigate to the directory where
you want to clone the repository.

cd path/to/your/directory

4. To clone the repository, type:

git clone https://github.com/username/repository.git

5 Forking a Repository

1. Navigate to the repository you want to fork on GitHub.

2. Click the Fork button at the top right of the page.

3. This will create a copy of the repository under your own GitHub account.

Last Updated: September 2, 2024 2

https://github.com/settings/tokens


A brief guide to using GitHub Georgina Woo

6 Creating a New Repository

6.1 Initializing a Repository Locally

1. Navigate to the directory where your project is located:

cd /path/to/projectfolder

2. Initialize the directory as a Git repository:

git init

3. Add all files in the directory to the repository:

git add .

4. (Optional) Check the status of your repository:

git status -s

5. Commit the files with an initial commit message:

git commit -m "Initial commit"

6.2 Uploading to GitHub

1. On the GitHub website, create a new repository by clicking the New button on your
profile page.

2. Name your repository and click Create repository.

3. Copy the repository URL (e.g., https://github.com/username/repo.git).

4. Link your local repository to the one on GitHub:

git remote add origin https://github.com/username/repo.git

5. Rename the default branch to main:

git branch -M main

6. Push your local commits to the GitHub repository:

git push -u origin main

Last Updated: September 2, 2024 3



A brief guide to using GitHub Georgina Woo

7 Adding and Committing Changes

1. After making changes to files in your repository, you need to stage and commit them.
The git add command stages changes (adding files to be tracked or marking modified
files) for the next commit.
git commit saves those staged changes as a snapshot in the repository’s history.
git push uploads these commits from your local repository to a remote repository, such
as GitHub.

2. To add all changed files, type:

git add .

This stages all the modified, new, or deleted files in the current directory and its sub-
directories.

3. To add a specific file, type:

git add filename.ext

Replace filename.ext with the name of the file you want to stage.

4. To add multiple specific files, type:

git add file1.ext file2.ext

Replace file1.ext and file2.ext with the names of the files you want to stage.

5. If there are files you want Git to ignore (e.g., temporary files, build artifacts), create a
.gitignore file in the root of your repository:

touch .gitignore

Open the .gitignore file in a text editor and list the files or directories you want to
ignore. For example:

*.log

build/

.DS Store

Note: In this example, *.log tells Git to ignore all files with a .log extension, build/
tells Git to ignore the entire build directory and all its contents, and .DS Store tells
Git to ignore any files named .DS Store, which are hidden system files created by
macOS.

6. After staging your changes, commit them by typing:

git commit -m "Your commit message here"

Replace "Your commit message here" with a brief description of the changes you
made.

Last Updated: September 2, 2024 4



A brief guide to using GitHub Georgina Woo

8 Pushing Changes to GitHub

1. To push your committed changes to GitHub, type:

git push origin main

2. Replace main with the name of the branch you are pushing to, if different.

9 Branching and Merging

Branches in Git allow you to work on different features or fixes separately from the main
codebase. This section explains how to create a branch, switch between branches, and merge
branches.

9.1 Creating a New Branch

To create a new branch and switch to it immediately, use:

git checkout -b new-branch-name

Replace new-branch-name with your branch name.

9.2 Switching Between Branches

To switch to an existing branch, use:

git checkout branch-name

Replace branch-name with the name of the branch you want to switch to.

9.3 Listing Branches

To see a list of all branches in your repository, use:

git branch

The current branch will be highlighted with an asterisk (*).

9.4 Merging Branches

Once you’ve made changes in a branch and want to incorporate them into another branch
(usually main), you can merge the branches.

1. First, switch to the branch you want to merge into, typically main:

git checkout main

2. Then, merge the changes from your feature branch:

git merge new-branch-name

Replace new-branch-name with the name of the branch you want to merge.

Last Updated: September 2, 2024 5



A brief guide to using GitHub Georgina Woo

9.5 Resolving Merge Conflicts

Sometimes, Git can’t automatically merge changes because the same part of a file was edited
in both branches. This creates a merge conflict.

1. Git will mark the conflicting files. Open these files in a text editor to see the conflicts.

2. Conflicting sections will be marked like this:

<<<<<<< HEAD

Your changes
=======

Changes in the other branch
>>>>>>> branch-name

3. Edit the file to resolve the conflict by choosing which changes to keep, or by combining
them.

4. After resolving the conflicts, stage the changes:

git add filename.ext

Replace filename.ext with the name of the file where you resolved conflicts.

5. Finally, commit the merge:

git commit

Note: It’s a good practice to regularly pull changes from the remote repository and merge
them into your branch to minimize conflicts.

10 Stashing Changes

If you need to switch branches or pull updates but have uncommitted changes you want to
save temporarily, you can use Git’s stash feature.

10.1 Stashing Your Changes

To stash your changes, type:

git stash

This saves your changes and reverts your working directory to match the last commit.

10.2 Applying Stashed Changes

To apply your stashed changes back to your working directory, type:

git stash apply

If you have multiple stashes, you can list them with:

git stash list

And apply a specific stash with:

git stash apply stash@{index}
Replace index with the number of the stash you want to apply.

Last Updated: September 2, 2024 6



A brief guide to using GitHub Georgina Woo

11 Viewing Commit History

To see the history of commits in your repository, you can use the following command:

git log

This will display a list of commits, including the commit hash, author, date, and commit
message. You can use various options with git log to customize the output, such as:

• git log --oneline: Displays a condensed view with just the commit hash and mes-
sage.

• git log --graph: Shows a graphical representation of your branch structure.

• git log -p: Shows the diff (changes) introduced in each commit.

12 Reverting Changes

Mistakes happen. If you need to undo changes, Git provides several options depending on
what you want to revert.

12.1 Undoing Unstaged Changes

To discard changes in your working directory that haven’t been staged, use:

git checkout -- filename.ext

This reverts the file back to its last committed state.

12.2 Unstaging Files

If you’ve staged changes but want to unstage them, use:

git reset HEAD filename.ext

This unstages the file but keeps your changes in the working directory.

12.3 Reverting a Commit

If you’ve committed changes and need to undo that commit, use:

git revert commit-hash

Replace commit-hash with the hash of the commit you want to revert. This creates a new
commit that undoes the changes from the specified commit.

Last Updated: September 2, 2024 7



A brief guide to using GitHub Georgina Woo

13 Common Git Commands

Here are some commonly used Git commands:

Command Description

git status Check the status of your working directory

git add Stage files for commit

git commit Commit staged files to the repository

git push Push commits to a remote repository

git pull Fetch and merge changes from a remote repository

git clone Clone a repository to your local machine

git branch List, create, or delete branches

git checkout Switch between branches

14 References

GitHub Documentation: https://docs.github.com/en
Pro Git Book: https://git-scm.com/book/en/v2
Git Cheat Sheet: https://education.github.com/git-cheat-sheet-education.pdf
Atlassian Git Tutorials: https://www.atlassian.com/git/tutorials

Last Updated: September 2, 2024 8

https://docs.github.com/en
https://git-scm.com/book/en/v2
https://education.github.com/git-cheat-sheet-education.pdf
https://www.atlassian.com/git/tutorials

	Creating a GitHub Account
	Configuring Git with Your Email and Username
	Creating a Personal Access Token
	Cloning a Repository
	Forking a Repository
	Creating a New Repository
	Initializing a Repository Locally
	Uploading to GitHub

	Adding and Committing Changes
	Pushing Changes to GitHub
	Branching and Merging
	Creating a New Branch
	Switching Between Branches
	Listing Branches
	Merging Branches
	Resolving Merge Conflicts

	Stashing Changes
	Stashing Your Changes
	Applying Stashed Changes

	Viewing Commit History
	Reverting Changes
	Undoing Unstaged Changes
	Unstaging Files
	Reverting a Commit

	Common Git Commands
	References

